久久久久亚洲AV成人无码电影,天天色综合网址,夜夜爽天天干,99九九久久精品视频

當(dāng)前位置: > 學(xué)術(shù)報告 > 文科 > 正文

文科

Bubbling and extinction profiles of the critical fast diffusion equation in bounded domain

發(fā)布時間:2020-05-08 瀏覽:

報告人:熊金鋼 副教授

報告日期:2020-05-11(星期一)

報告時間:19:30

報告平臺:騰訊會議(下載安裝騰訊會議APP或騰訊會議PC客戶端,點擊“加入會議”輸入會議ID)

會議ID:493 850 349

點擊鏈接入會:https://meeting.tencent.com/s/5bzE78b42541

會議直播: https://meeting.tencent.com/l/5XaawNHcb80b

主辦單位:數(shù)學(xué)與信息科學(xué)學(xué)院

講座人簡介:

熊金鋼,北京師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院副教授,博導(dǎo)。2012年博士畢業(yè)于北京師范大學(xué);2012至2014年,是北京大學(xué)北京國際數(shù)學(xué)研究中心Simons博士后。研究興趣為偏微分方程、非線性分析、幾何分析。至今在國際主流數(shù)學(xué)期刊J. Eur. Math. Soc., Math. Ann., Adv. Math., Arch. Rat. Mech. Anal., Annales IHP-ANL, Comm.PDE, J. Funct. Anal., Trans. Amer. Math. Soc.,J. Reine Angew. Math.等發(fā)表論文30余篇。2019年獲國家優(yōu)秀青年基金資助。

講座簡介:

In this talk, I will show the concentration compactness phenomenon for nonnegative solutions of the Sobolev critical fast diffusion equations in bounded domains with the vanishing Dirichlet boundary condition. Inspired by the Brezis-Nirenberg problem, I will present the extinction behavior of the solutions if the equations have a favorable zero order term in dimension four and higher. Moreover, the sharp extinction rate is obtained. This is joint with Tianling Jin.

久久超乳爆乳中文字幕| 日韩精品免费一区二区三区| 东京热这里只有精品| 国语对白在线| 日本videos护士| 97超碰人人干| 国产小视频在线看| 四虎影院,生活片| 亚洲无线无码| 国产精品三级片在线| av一级| 欧美中文免费| 久久a√| 欧美精品久久男人| 男人的天堂91| 亚洲欧洲一区二区三区网久久 | 欧美亚洲日韩三级片| 国产乱妇乱子在线播视频播放网站| AV无码HD| 国产欧美一区在线| 会宁县| 懂色蜜桃极品少妇淫语| 超碰自拍少妇| 久久亚洲日韩看片无码| 久久久每日更新| 欧洲激情免费无码在线| 成年免费大片黄在线观看| 国产夜间男生福利| 国产免费高清视频在线一区二区| 亚洲老熟妇女性亚洲| 日韩熟妇色| 国产蜜臀在线观看视频| 亚洲视频污在线观看| 大香蕉伊人| 啪啪精选国产| 久久精品免费一区二区| 国产色婷婷视频一区| 国产精品综合久久久| 久久久精品A级毛片| 久久久久大香蕉| 久久综合a v|