報(bào)告人:熊金鋼 副教授
報(bào)告日期:2020-05-11(星期一)
報(bào)告時(shí)間:19:30
報(bào)告平臺(tái):騰訊會(huì)議(下載安裝騰訊會(huì)議APP或騰訊會(huì)議PC客戶端,點(diǎn)擊“加入會(huì)議”輸入會(huì)議ID)
會(huì)議ID:493 850 349
點(diǎn)擊鏈接入會(huì):https://meeting.tencent.com/s/5bzE78b42541
會(huì)議直播: https://meeting.tencent.com/l/5XaawNHcb80b
主辦單位:數(shù)學(xué)與信息科學(xué)學(xué)院
講座人簡(jiǎn)介:
熊金鋼,北京師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院副教授,博導(dǎo)。2012年博士畢業(yè)于北京師范大學(xué);2012至2014年,是北京大學(xué)北京國(guó)際數(shù)學(xué)研究中心Simons博士后。研究興趣為偏微分方程、非線性分析、幾何分析。至今在國(guó)際主流數(shù)學(xué)期刊J. Eur. Math. Soc., Math. Ann., Adv. Math., Arch. Rat. Mech. Anal., Annales IHP-ANL, Comm.PDE, J. Funct. Anal., Trans. Amer. Math. Soc.,J. Reine Angew. Math.等發(fā)表論文30余篇。2019年獲國(guó)家優(yōu)秀青年基金資助。
講座簡(jiǎn)介:
In this talk, I will show the concentration compactness phenomenon for nonnegative solutions of the Sobolev critical fast diffusion equations in bounded domains with the vanishing Dirichlet boundary condition. Inspired by the Brezis-Nirenberg problem, I will present the extinction behavior of the solutions if the equations have a favorable zero order term in dimension four and higher. Moreover, the sharp extinction rate is obtained. This is joint with Tianling Jin.