報(bào)告人: 王利廣 教授
講座日期:2020-12-07
講座時(shí)間:15:00
報(bào)告地點(diǎn): 騰訊會(huì)議 (會(huì)議 ID:438 767 510)
主辦單位: 數(shù)學(xué)與信息科學(xué)學(xué)院
講座人簡(jiǎn)介:
王利廣,曲阜師范大學(xué)教授,博士生導(dǎo)師。2005年7月于中國(guó)科學(xué)院獲理學(xué)博士學(xué)位。研究方向?yàn)榉汉治龊退阕哟鷶?shù)。目前正在主持國(guó)家自然科學(xué)基金面上項(xiàng)目一項(xiàng),主持山東省自然科學(xué)基金面上項(xiàng)目一項(xiàng);已主持完成國(guó)家自然科學(xué)基金面上項(xiàng)目和數(shù)學(xué)天元基金各一項(xiàng)、山東省自然科學(xué)基金面上項(xiàng)目一項(xiàng)。已在《J. Functional Analysis》、《J. Operator Theory》等期刊發(fā)表論文20余篇。
講座簡(jiǎn)介:
Wigner’s theorem shows that every transition probability preserving surjection on the set of all rank one projections on a Hilbert space is induced by a unitary or an antiunitary. Wigner's theorem can be interpreted as a result of mappings that preserves certain metric on the set of projections. Recently, Geh\'{e}r and \u{S}emrl have characterized the general form of surjective isometries of the set of all projections on an infinite-dimensional separable Hilbert space using unitaries and antiunitaries. In this talk, we will study the surjective $L^2$-isometries of the projection lattice of an infinite dimensional Hilbert space and show that every such isometry can also be described by unitaries and antiunitaries. This talk is based on joint work with Wenming Wu and Wei Yuan.