久久久久亚洲AV成人无码电影,天天色综合网址,夜夜爽天天干,99九九久久精品视频

當(dāng)前位置: > 學(xué)術(shù)報告 > 理科 > 正文

理科

基礎(chǔ)數(shù)學(xué)研究中心2020年系列報告2期

發(fā)布時間:2020-11-10 瀏覽:

報告人: 馬如云、李東升

報告日期:2020-11-12

報告時間:15:00

報告地點:長安校區(qū) 數(shù)學(xué)與信息科學(xué)學(xué)院學(xué)術(shù)交流廳

主辦單位:陜西師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院

報告題目一:Global structure of radial positive solutions for a prescribed mean curvature problem

報告人簡介:

馬如云,西安電子科技大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院院長。1997年在蘭州大學(xué)獲得博士學(xué)位,同年破格晉升為教授。先后在在美國康涅狄格州立中央大學(xué)(Central Connecticut State University)和澳大利亞昆士蘭大學(xué)(The University of Queensland)做高級訪問學(xué)者。美國《Math Review》及德國《Zentralblatt Math》評論員、中國數(shù)學(xué)會第十二、十三屆理事。主要研究方向是非線性微分方程邊值問題。在J. Funct. Anal., J. Diff. Eqs. Z. Angew Math. Phys.,Proc. Edinburgh Math. Soc.等國際著名學(xué)術(shù)期刊上發(fā)表290余篇論文。入選Elsevier發(fā)布2014-2018年中國高被引學(xué)者榜單。2014-2016年位列數(shù)學(xué)學(xué)科前九名。至20204月,其論文已被SCI刊物引用2764次。出版專著3部。近年來,主持國家自然科學(xué)基金項目7項;榮獲甘肅省自然科學(xué)一等獎1次、甘肅省自然科學(xué)獎二等獎4次、甘肅省科技進(jìn)步獎三等獎5次、甘肅省高??萍歼M(jìn)步獎一等獎6次;榮獲教育部優(yōu)秀骨干教師、甘肅省名師獎及甘肅省園丁獎。2012年起享受國務(wù)院頒發(fā)的政府特殊津貼;2014年榮獲中國僑界貢獻(xiàn)獎;2015年榮獲秦元勛數(shù)學(xué)獎;2009年入選甘肅省科技領(lǐng)軍人才第一層次;2009年入選國家新世紀(jì)百千萬人才工程。

報告簡介:

We are concerned with the global structure of radial positive solutions of boundary value problem,where,  , is a positive parameter,  and  denote the Euclidean norm in. All results, depending on the behavior of nonlinear term near 0, are obtained by using global bifurcation techniques.

報告題目二: Estimates for Elliptic Equations on  Domains

報告人簡介:李東升,西安交通大學(xué)數(shù)學(xué)系教授,博士生導(dǎo)師。陜西省數(shù)學(xué)會常務(wù)理事兼副秘書長。長期從事偏微分方程正則性理論方面的研究,主要成果有:系統(tǒng)地給出使得橢圓(拋物)方程解在邊界可微的最優(yōu)區(qū)域邊界幾何條件;在擬區(qū)域上得到方程的估計,對于四階方程,允許方程系數(shù)在穿過一個Reifenberg型曲面時有跳躍;推廣了Caffarelli完全非線性方程的估計,并給出斜邊解條件下解及其導(dǎo)數(shù)的Holder估計等。曾先后多次訪問美國愛荷華大學(xué)、明尼蘇達(dá)大學(xué)、普林斯頓大學(xué)等多所國際著名高校。目前在Adv. Math., Arch. Ration. Mech. Anal., J. Funct. Anal., J. Math. Pure AppL.,Cal.Var.PDE., J. Diff.l Eqs.等國際著名學(xué)術(shù)期刊發(fā)表科研論文60余篇;主持6項國家自然科學(xué)基金;是“三秦人才津貼”獲得者,以及陜西省優(yōu)秀博士論文指導(dǎo)教師獲得者;獲陜西省教育廳科技一等獎一項,教育部科技進(jìn)步二等獎一項,陜西省科技進(jìn)步二等獎一項。

報告簡介:

The classical estimates for elliptic equations are established on domains. We will extend the estimates on  domains. Both the Whitney cover lemma and the Vitali cover lemma will be used. By the Whitney cover lemma, we will give a decay rate of the distribution of and then using the Vitali cover lemma, we will accelerate the decay. In this talk, we will also review the developing of estimates for elliptic equations.

日韩欧美少妇人气| 我要看中国特级毛片| av天堂午夜精品一区| 麻豆9977伦理视頻| 皮肤上有小白点| 91精品一区二区三区久久久久久| 97久久国产日韩精品| 夜夜性日日| 亚洲小说区图片区另类春色| 在线精品视频日韩| 久久婷婷人人澡人人爽人人爱| 亚洲综合色欲综香| 一级做a爱片| 日韩在现视频| 韩国三级网站| 亚洲欧美有码精品| 欧美有码在线| 激情九月久久| 日本自偷自拍| 天美麻豆91| 巴楚县| 久久精品超碰av无码| 国产精品一区二区三区视频| 噜啊噜av| 天天干天天草| 日韩少妇自拍视频三区| 永久久久小黄片| 最新亚洲AV=期| 91色在线| 中文字幕AV在线操| 最近日韩| 国产精品怡红院永久免费| 欧美成人免费网站| 夜夜操狠狠操夜夜爽| 二区三区亚| 国产亚洲一区在线| 永久域名精品在线| www。亚洲| 久在操| 久久er这里更精彩| 亚洲色天|